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Abstract
A weak radial electric field can suppress radial excursions of a guiding center from its mean
magnetic surface. The physical origin of this effect is the smearing action by a poloidal E×B
rotation, which tend to cancel out the inward and outward radial drifts. A use of this phenomenon
may provide larger margins for magnetic field shaping with radial confinement of particles
maintained in the collision free idealization. Mirror fields, stabilized by a quadrupolar field
component, are of particular interest for their MHD stability and the possibility to control the
quasi neutral radial electric field by biased potential plates outside the confinement region. Flux
surface footprints on the end tank wall have to be traced to avoid short-circuiting between biased
plates. Assuming a robust biasing procedure, moderate voltage demands for the biased plates
seems adequate to cure even the radial excursions of Yushmanov ions which could be locally
trapped near the mirrors. Analytical expressions are obtained for a magnetic quadrupolar mirror
configuration which possesses minimal radial magnetic drifts in the central confinement region.
By adding a weak controlled radial quasi-neutral electric field, the majority of gyro centers are
predicted to be forced to move even closer to their respective mean magnetic surface. The gyro
center radial coordinate is in such a case an accurate approximation for a constant of motion. By
using this constant of motion, the analysis is in a Vlasov description extended to finite β. A
correspondence between that Vlasov system and a fluid description with a scalar pressure and an
electric potential is verified. The minimum B criterion is considered and implications for flute
mode stability in the considered magnetic field is analyzed. By carrying out a long-thin
expansion to a higher order, the validity of the calculations are extended to shorter and more
compact device designs.

Keywords: radial invariant, radial electric field, biased potential plates, magnetic mirror, mirror
machine, hybrid reactor, minimum B

1. Introduction

The paper studies a mirror confinement scheme, where each
particle is moving close to its mean magnetic surface. A tool
to achieve this is a quasi-neutral radial electric field. The
physical origin of this effect is the smearing action by a
poloidal E×B rotation, which tend to be effective for a
distinct cancelation of the inward and outward radial drifts.
Although margins for tolerable field errors in the magnetic
field design may increase with a radial electric field, it is still

essential to select the magnetic field with some care. Gross
MHD instabilities should be avoided, as well as too strong
radial magnetic drifts. For a minimum B mirror field, the
ellipticity of the flux tubes need also to be kept within a
tolerable range. We here consider a single cell mirror, with a
quadrupolar field component to provide gross MHD stability.

A fusion plasma needs an almost perfect confinement of
the charges in the collision free idealization [1, 2]. Constants
of motions are useful to identify confinement properties. In a
collision free idealization, it is well known that longitudinal
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confinement is based on two constants of motion, namely the
magnetic moment x v,m ( ) and the energy x v,e( ) of the
particle:
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Here, q, m, B, ,f v̂ and v are the charge, mass, magnetic field
modulus, electric potential and speed along and perpendicular
to the magnetic field. The mirror effect then forces the particle
motion to be limited to a region bounded by a magnetic field
strength
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where the last end assumes that the longitudinal variations of
the electric potential are small. This would assure longitudinal
confinement if each guiding center is restricted to move close
to a single magnetic surface, but in most field configurations,
a perpendicular drift can ruin confinement by a transverse
motion into regions not intended for confinement. A goal of
this paper is to approach a situation where most of the guiding
center move close to their respective mean magnetic surface.
Since a magnetic surface is labeled by a constant value of the
radial Clebsch coordinate r x0 ( ) (which determines the
magnetic flux inside the magnetic surface), the radial coor-
dinate r x v,0 ( ) of the guiding center is an approximate con-
stant of motion if the particle orbit remains close to its mean
magnetic surface, i.e. (compare [3–5]).

Here, r x0 ( ) is the radial Clebsch coordinate of the particle
and r x v,g0, ( ) is the small but fast ‘gyro ripple’ associated with
the gyro oscillations of the particle around the magnetic field
(this gyro ripple is responsible for the diamagnetic current, and
the radial invariant enables descriptions of radial variations of
the density and other quantities in the confinement scheme). A

radial invariant in this form does not exist in typical confine-
ment schemes (in toroidal devices, finite banana widths is one
of the obstacles). A main objective of this paper is to analyze if
that situation could be approached in mirror geometry, where a
quasi-neutral electric field may assist to force the particles to
move close to a magnetic surface (some conditions for quad-
rupolar mirror fields will be of special interest for this paper).
Conditions for omnigenuity has over several decades been
studied by many researchers. This paper pay a stronger attention
on possibilities with of a radial electric electric field. This is
outlined in figure 1. With a radial variation of the quasi-neutral
electric potential, the plasma is forced to rotate. This response is
based on a plasma polarization effect, for which Baker and
Hammel [6] did pioneering studies.

To describe the plasma polarization phenomenon, it is
instructive to first recall the motion of a single point charge
moving from a field-free region into a region with constant
magnetic field with a direction perpendicular to the initial
velocity v of the charge. In the magnetic field region, the
resulting orbit is a semi-circle, and the charge is reflected back
to the field free region in the opposite velocity direction,
where positive and negative charges bend in opposite direc-
tions along their semicircles in the magnetic field region. In
such a single particle description, penetration into the
magnetic field region is clearly not possible. As described by
Baker and Hammel, the situations is different for a collision-
free plasma beam of sufficient density entering a magnetic
field region. On the entrance, electrons are slightly displaced
by the Lorentz force where the charge displacement produces
a perpendicular electric field, which they refers to as a plasma
polarization mechanism. The magnitude of the electric field is
(apart from possible pressure gradient effects) determined by
the condition that the electric field in the co-moving beam

Figure 1. Overview of mirror magnetic field, expander region and arrangement of biased potential plates at end tank wall. It is essential to
trace flux tube cross sections at the end tank for the geometrical design of the insulation between the biased plates. Magnetic fields can be
constructed where these flux tube cross sections are almost circular. The purpose is to control a radial variation of the quasi-neutral electric
potential and plasma rotation at the confinement region by the potentials at the biased plates. An annular transition region where neoclassical
effects can be important is indicated in the figure.
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system is zero, whereby

E v B 0.+ ´ =

This result for the electric field in the lab system is consistent
with the same beam velocity in the field-free and magnetic
field regions. A short calculation gives the result

Bv E B 2= ´( ) for the plasma velocity in the magnetic field
region, i.e. the plasma polarization results in a conventional
E×B drift [6]. The situation described here assumes that the
magnetic field lines intersect insulating plates. If these plates
are replaced by conducting plates, the plasma polarization is
short-circuited by the high electron mobility along magnetic
field lines, and plasma beam penetration cannot occur [6].

We are here interested in the reverse action, i.e. to produce
a plasma motion (a rotation in our case) by a quasi-neutral
electric field across the magnetic field. An arrangement of
biased potential plates at the end tank wall may be an
arrangement to control the quasi-neutral electric field in the
plasma, as depicted in figures 1 and 2. For this scheme it is
essential that the region between the mirrors and the end tank
wall contains a low density quasi-neutral plasma (with a
diminishingly small Debye screening length), where the high
electron mobility along magnetic field lines tend to relax
potential variations along the magnetic surfaces (although
some potential variations along flux surfaces can result from
anisotropic pressure gradients, the mirror effect, collisions or
drifts, a conjecture is that in the simplest model, each flux
surface corresponds to a short-circuited region).

The goal is transpose a voltage difference between biased
plates at the end tank to a similar voltage difference between
flux surfaces in the confinement region. The biased potentials
would then offer a control tool for the poloidal plasma rota-
tion. A pre-ionized quasi-neutral plasma is assumed to fill the
vacuum chamber before applying the biased potentials. The
magnetic field with a quadrupolar component is arranged by a
coil system, depicted in figure 3, which is capable of produ-
cing nearly circular cross sections of the magnetic surfaces at
the end tank wall (the flux surface footprint on the expander
wall has to be considered in the biased end plate geometrical
arrangements to avoid short-circuiting). It is essential that the
magnetic axis intersect the most central biased plate. With
charged particles drifting close to a magnetic surface, our
analysis predicts that a quasi-neutral electric potential, derived
from the Vlasov equation, imply an E×B drift primarily in a
poloidal direction.

To describe the implications for a radial electric in some
more detail, we need to choose a magnetic field. We consider
a long-thin expansion for a mirror field with almost straight
magnetic field lines in the confinement region, stabilized by a
quadrupolar magnetic field which produces a minimum B
state to leading order. In the leading order, the magnetic field
is the straight field line mirror (SFLM) field [7, 8]. The long-
thin expansion [9] is here carried out to higher order with a
goal to minimize radial magnetic drifts. One intention of the
study is to enable more compact and shorter designs of the
magnetic mirror device.

The magnetic field investigated here has certain favorable
confinement properties (but also a certain drawback with a
singular magnetic field strength, which will be briefly analyzed
in the paper). Existence of a constant of motion for the magnetic
drift motion provides a bounded radial motion for particles in the
central confinement region, and radial excursion of the guiding
centers from their mean flux surface are small. The situation is
predicted to be further improved by adding a controlled radial
electric field [5]. With very modest values of biased potentials
generating the electric field in the plasma, radial drift excursions
are predicted to decrease, and a majority of each gyro centers
move almost arbitrarily close to their respective mean magnetic
surface. This corresponds to the existence of a constant of
motion, a radial invariant, which restricts the motion of a gyro
center to the neighborhood of its mean flux surface. This radial
invariant can be used to extend the analysis to finite beta Vlasov
equilibria. Relations between such Vlasov systems and a fluid
equilibria will be demonstrated.

Results in mirror machine research have undergone
impressive progress during the last decades. Particularly
important developments have been made on the electron
temperature, which by many fusion researchers have been
believed to be a showstopper for mirror fusion devices. The
Budker Institute at Novosibirsk in Russia has a comprehen-
sive experimental activity on axisymmetric mirrors. The
Gol-3 device, containing a thin very high density plasma
which is heated by a relativistic electron beam, was in the
year 2002 turned into a multi-mirror with 26 cells [10]. The
resulting electron temperature, around 1.5 keV, was a first
dramatic demonstration that that mirror machines could reach

Figure 2. Sketch of cross sections of flux tubes at the end tank. There
is a slight deviation from circles of these curves. This has to be
considered for the shapes of the biased plates to avoid short-
circuiting between flux surfaces. With quadrupolar symmetry, the
flux surface footprints at the end tank on the opposite side is rotated
by 90°. The flux surface cross section prints at the wall are to leading
order mapped to circles at the mid plane. The flux tube expansion
may be envisioned as a ‘lens tool’ to magnify the radial scale length
at the confinement region, with a magnification B B 100 end tank »
given by the square root of the ratio between the magnetic field
strengths at the mid plane to the end tank value. Short-circuiting of
adjacent biased potential plates by the high electron mobility along
flux surfaces must be avoided, which gives constraints on electric
isolation widths and the number of independent biased potentials
(see appendix D). Magnetic shaping is crucial for this.
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higher electron temperatures than expected from earlier
experimental results in mirrors. The Gamma10 tandem mirror
device at Tsukuba in Japan increased the electron temperature
to about 650 eV (measured by soft x-ray spectroscopy) [11].
The gas dynamic trap (GDT) experiment at the Budker
Institute at Novosibirsk achieved a doubling of the electron
temperature to about 230 eV after introducing biased potential
plates in the device [12]. More recently, the electron temp-
erature in GDT (measured by Thompson scattering) has been
increased to 660 eV and even reached about 900 eV in a few
shots [13], in experiments where electron cyclotron resonance
heating (ECRH) was applied in addition to the neutral beam
heating. The achieved electron temperature in GDT is already
of a practical interest for a fusion neutron source. A new
axisymmetric device, which is a multicell ‘tandem-mirror’
modification of the single cell GDT, is under construction at
the Budker Institute [14]. The construction of this new axi-
symmetric device has been motivated by the progress made
on the axisymmetric Gol-3 and GDT devices.

An advantage of axisymmetric mirrors is the simple coil
structure and flexibility to make modifications [15]. In a
perfectly axisymmetric mirror field, each guiding center
moves on its mean magnetic surface, and flux tube cross
sections are circular. Very high mirror ratios can be reached in
axisymmetric systems. Stability of the flute mode is a main
threat in axisymmetric mirrors. The stabilization mechanism
in GDT relies on a plasma flow to the expander regions
beyond the confinement region. An achievement is that sta-
bilization effects from an expanding flux tube has been
demonstrated in GDT, but in certain parameter regimes, the

flute mode may not be stable. Improved confinement has then
been arranged with a shear poloidal plasma rotation produced
by biased potential plates. In such cases, it is envisioned that
the sheared rotation cuts large plasma displacements struc-
tures into smaller structures near the radius where the plasma
rotates in opposite directions [12]. The shear layer may then
act as a kind of ‘internal transport barrier’, but the confine-
ment quality may not be adequate in such scenarios. The
shear rotation mechanism does not provide flute stability;
rather confinement is rescued to some degree by ‘brutally
chopping’ the large unstable displacements into smaller pie-
ces. A more quiescent confinement would require stability of
the flute mode [5].

The study in this paper is on mirrors with a stabilizing
quadrupolar field. In a minimum B field created by a quad-
rupolar field component, the magnetic field strength increases
in radial directions away from the magnetic axis [16]. A flux
surface in a minimum B field region has concave (or favor-
able) curvature. Minimum B fields have for a long time been
known to be capable of stabilizing the flute mode, and the first
experimental report of the dramatic stabilizing effect was
published in a classical paper [14]. A drawback of mirrors
stabilized by a quadrupolar field is that the ellipticity of the
cross sections of the magnetic flux tubes increases with the
magnetic field strengths along the axis [9]. The ellipticity
needs to be kept within a tolerable range, while flute mode
stability should be maintained at the same time. One motiv-
ation for the SFLM field with its straight non-parallel field
lines is that it may correspond to a minimal ellipticity for a
given mirror ratio of a minimum B mirror field [7].

Figure 3. Shape of 3D superconducting coils aimed for a long-thin version of the SFLM field. Inner radius of the coils is 2.1 m and the outer
radius is 2.89 m. With a vacuum chamber radius of 1 m, this provides sufficient space for a reactor blanket in between the vacuum chamber
and the inner radius of the coils. Parameters are mid plane plasma radius a=0.4 m, length of confinement region 25 m, and B0=1.5 T. The
SFLM field is reproduced by the coils in a confinement region with a mirror ratio R 4,m  and beyond that confinement region the flux tube
recirculates and expands towards the end tank walls with a final radius of 4 m (with almost circular cross section near the end tank). That
provides large areas for plasma receiving plates (which correspond to the divertor plates in toroidal devices) and a power deposition below
1 MW m ,2- which is predicted to be within tolerable limits. The lower figure indicates locations of reactor blanket and inlets for coolant loops
in a hybrid reactor design. No holes are Required in the envelope surface if feeding of fuel and heating and diagnostics are made through the
mirror ends. Reactor engineering is simplified by the avoidance of such holes.
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Heating of a plasma in a SFLM device could be carried
out with ion cyclotron resonance heating (ICRH), with
separate antennas placed near the field maxima on opposite
sides of the mid-plane [17, 18]. One antenna system would be
used for heating deuterium ions, while the other antenna
system on the opposite side of the mid plane would be used
for triton heating [17, 18]. The geometry of the SFLM is
predicted to enable good antenna coupling and effective
plasma heating, where steady state heating is facilitated by the
choice of ICRH for the heating [17]. Selecting ICRH fre-
quencies to match resonances at higher field strengths than at
the mid plane could reduce power demands and produce a
sloshing ion distribution, which could provide a warm plasma
stabilization in between the sloshing ion peaks. A scenario is
to counteract diffusion into the loss cone by sweeping ICRH
frequencies, with a goal to reach a higher fusion Q factor [18].
There is also an option for additional ECRH [19], where a
minimum B field corresponds to an attractor state for the ECR
waves [19].

Mirror machines, where longitudinal loss from pitch
angle scattering and the comparatively low electron temper-
ature pose challenges, have not been developed to a level with
adequate confinement for a stand-alone fusion reactor. Con-
finement demands are much less restrictive in a fusion-fission
hybrid reactor scenario [20, 21]. Studies have predicted that a
power amplification by fission could be as high as 150 in a
mirror hybrid reactor, with reactor safety parameters main-
tained within safety margins [20], It could then be sufficient
with a fusion power of only 10MW and a fusion Q factor as
low as only 0.15 for efficient power production [21], which
may be achieved with an electron temperature in the range of
only 1 keV. Recent years achievements in mirror experiments
indicate that power production from a mirror hybrid reactor is
a realistic option. Some of the engineering flexibilities with an
open geometry, with a need for a large expander area for a
‘divertor system’, are indicated in figure 3, and these may turn
out to be a crucial advantage for the development of a useful
mirror reactor concept.

2. Gyro center motion in a vacuum magnetic field

Let us describe the magnetic field WB =  in a vacuum
region in terms of the scalar magnetic potential W and
Clebsch coordinates x x0 ( ) and y x ,0 ( ) and use the curvilinear
set x y W, ,0 0( ) to describe the guiding center motion. The
coordinates are related by

B x y W.0 0 0 ´  = 

With B0 constant, this implies W 02 = and  ´
x y 0.0 0 ´  =( ) Furthermore, the orthogonal relations

W x 00 ⋅  = and W y 00 ⋅  = imply that the Clebsch
coordinates are constant along magnetic field lines. A
motivation to use Clebsch coordinates is that the guiding
center values of the Clebsch coordinates are slowly varying
when the gyro center drifts are small.

The guiding center velocity is written as v vgc ,gc= +^

Bv , ˆ where the perpendicular drift is given by the standard

expression in a vacuum magnetic field:
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Here, all quantities are evaluated at the guiding center posi-
tion and m Bv 22m = ^ ( ) is the magnetic moment adiabatic
invariant. The energy conservation of the guiding centers in a
stationary field reads

m
U

v

2
const,

2

e = + =

where E f= - and U B qm f= + is the guiding center
potential. Using W Wv ,gc= ⋅  x xv0 gc 0= ⋅  and y0 =

yvgc 0⋅  for the evolution of the guiding center coordinates,

where bars indicate gyro center values, we obtainW Bv=  and
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We will here determine the Cartesian-like Clebsch coordinates
by choosing the conditions x xx0 ( ) and y yx0 ( ) as
x 0. In cylindrical Clebsch coordinates, defined by the sub-
stitutions x r cos0 0 0q= and y r sin ,0 0 0q= the ‘poloidal’ and
radial drifts can be determined from
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The last term corresponds to the magnetic drift in the radial
direction. As seen, this radial magnetic drift would be zero if the
magnetic field strength in the r W, ,0 0q( ) coordinates could be
written in the form B B r W, ,0= ( ) which then corresponds to a
guiding center motion along a single magnetic surface (local
omnigenuity) if the electric potential is independent of .0q It
needs to be emphasized here that a case with B 00q¶ ¶ = is
approached not only by axisymmetric mirrors; the criterion is
also met, to leading order in the long-thin expansion, by a
certain class of quadrupolar mirror magnetic fields [1–3,
7, 22, 23]. Equation (1d) shows that a radial constant of motion,
i.e. the guiding center radial coordinate r ,0 can be identified in
such a case. The radial invariant can also be extended to
situations where the gyro center makes oscillatory drift excur-
sions from the mean magnetic surface, but means to ensure the
radial confinement has first to be arranged to assure the exis-
tence of this invariant. In situations with unbounded radial
motions in the collision free approximation, the radial invariant
ceases to exist. The point with the radial invariant for a con-
finement scheme is that it should imply a bounded radial motion
in the collision free idealization.
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Quasi-neutrality imposes restrictions on possible poten-
tial variations in a plasma. In cases where r, , 0e m are useful
constants of motions, the Vlasov treatment in section 6 leads
to a quasi-neutral potential in the form r B, .0f̂ ( ) The drift
equations then become, if the plasma β is neglected:

x y e, 10 2 0w= ( )

y x f, 10 1 0w= - ( )
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Here, U r B q B, .0 f m= +ˆ ( ) ˆ We will put special attention to
cases where 11 2w w » in the central confinement region. To
see the conditions for this, we observe that
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If B 0,0q¶ ¶ = we obtain 1 2w w= and then r0 is constant
from equations (1e), (1f). Equation (1g) shows that the
deviation ,2 1w w- which produces radial excursions from the
mean magnetic surface of a particle, vanishes when the radial
magnetic drift is zero, and magnetic shaping is therefore
crucial for the possibility to find an arrangement with small
radial excursions. For more general quadrupolar mirror fields,
a radial electric field can assist in making the ratio 1 2w w
close to unity and slowly varying, where voltage demands are
particularly small for a region where the magnetic drift is
weak (i.e. the SFLM field), as described in [5]. The WKB
solution in [5] then leads to a radial invariant Ir in the form
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The constant Ir describes a radially bounded gyro center
motion in the vicinity of a mean magnetic surface. The size of
the radial gyro center excursions r r Ir0 0D º - can be esti-
mated by
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Since B x y W, ,0 0( ) for a quadrupolar mirror field depends on
the squares x0

2 and y ,0
2 the displacement r0D is zero along

curves y x0 0=  [5]. With a parabolic electric potential
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2 2f f= ⋅ˆ ˆ ( ) we obtain the estimate
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With a moderate strength of the radial potential variations
q k T ,B0f <(∣ ∣ ) this predicts substantial radial excursions in a

transition region where B 0q¶ ¶/ is not small. The radial gyro
center displacements may for a class of orbits even be larger
than the vacuum chamber radius, and radial loss due to

collisions is enhanced when r0D is increased. The confine-
ment is better for particles with orbits confined to regions
where B 0q¶ ¶ is small and the gyro centers move close their
mean magnetic surface, whereby neoclassical effect can be
neglected. The ratio of the rate of neoclassical to diffusive
omnigenous collisional loss can be estimating the squares of
the radial displacements in collision events. Therefore, a large
value of the ratio

r

r
,

g

0
2

2
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where rg is the thermal gyro radius, indicates a faster radial
loss in regions where r0D is large, with a tendency for a
lowered plasma density in those regions. However, neo-
classical effects can to a large extent be avoided with
appropriate magnetic field designs for quadrupolar mirrors.
We need to emphasize that large values of r0D would not
appear in regions where B 0q¶ ¶ is sufficiently small, and in
the paraxial approximation, it is even possible to completely
eliminate such regions with appropriate choices of magnetic
field (see appendix D for detailed derivation; beneficial orbit
effects on Yushmanov ions from a radial electric field is also
described in that appendix). The transition region with strong
neoclassical effects can therefore be avoided near the axis, but
neoclassical effects can become more important in some
annular transition region further away from the axis, as
indicated in figure 1.

We envision a high density central confinement region
where both the mirror effect and small magnitudes of r0D
combine for a high quality confinement, followed by a
(possibly annular) transition region with larger magnitude of

B 0q¶ ¶ (and a decreasing density along the longitudinal
direction) extending to a surface with maximal strength of B.
In the flux expanding region beyond this region, the mirror
effect no longer provides confinement, and the plasma density
falls to much lower values compared to the central confine-
ment region.

A weak radial electric field may be a tool to make particle
orbits radially bounded, at least in the major part of the
confinement region. Although there exists regions where the
electric field ceases to be effective, the electric drift con-
strained by quasi neutrality may nevertheless often be
expected to improve overall confinement and reduce radial
excursions caused by magnetic radial drifts. A radial electric
field may even be capable of restoring radial confinement
in situations where the radial magnetic drift, in the absence of
the counteracting electric drifts, would correspond to an
unbounded radial motion in the collision free approximation,
compare [1, 3, 5, 22, 24]. The confinement improvement with
a slow plasma rotation can be dramatic, even for modest
strengths of the radial electric field. This favorable effect is
more pronounced in magnetic field regions with slow
magnetic drifts [5], and we will here analyze a field config-
uration with minimal requirements on the electric field
strength.
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3. A quadrupolar mirror magnetic field with minimal
radial drifts

Our aim is to determine a magnetic field with favorable
guiding center drift properties. A case where analytical
treatments are tractable to identify magnetic field properties is
a long-thin approximation. We here consider a long-thin
quadrupolar expansion of the scalar magnetic vacuum
potential to a higher order than typically done, compare,
[1, 2, 5, 9];

W W z
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0ò=˜ ( ) ˜( ) ẑ is a unit vector along

the axis of the long-thin quadrupolar magnetic flux tube,
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where primes denote differentiation with respect to z. The
magnetic field components are
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The special case of axisymmetric fields corresponds to
A A2 1= and 2 .2 1h h h= = The focus in this paper is on
mirrors with a stabilizing quadrupolar field. We need the
magnetic field strength to calculate guiding center drifts:
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Each guiding center would move along a single magnetic
field line if a vacuum field strength of the form B B W=( )
could be found, since the magnetic drift vanish for such a
configuration. To approach this, we first notice that
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The magnetic drifts in a vacuum field vanish if Brest would be
zero. To leading order, that would be the case if

A
B z

c z
a, 31

1
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˜( ) ( )

A
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b32
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and equation (2b) gives B z ,B c c

c z c z
0 1 2

1 2
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where c ,1 c2 and

B0 are constants. The choice c c c 01 2= - = > implies

B z
B

z c
c

1
, 30

2 2
=

-
˜( ) ( )

which corresponds to a mirror field (the SFLM field) with a
field minimum at z 0.= The field strength is finite for z c,<∣ ∣
which represents the mirror confined region. The scalar
magnetic potential at the z axis become

W z cB ln c z

c z0= +
-

˜ ( )
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which has the inverse z c W cBtanh .0= [ ˜ ( )] We can then
make the identification

B W B
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0
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To simplify formula writings, we introduce
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and obtain by substituting equations (3a), (3b):
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to show that zh ( ) is a generator for the solutions of Q z ,1( )
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In a system without magnetic drift all the three quantities
Q z ,1( ) Q z2 ( ) and Q z( ) have to be zero, but it is evident that
this is not possible. Magnetic drifts are thus unavoidable in
the higher order long-thin expansion for the quadrupolar
mirror field, although disappearance of the magnetic drifts can
be arranged for the leading terms in the expansion. To higher
order in the expansion, the best we may hope for is an
omnigenous equilibrium, where each guiding center moves
on a single magnetic surface, instead of a motion on a single
magnetic field line. Even this turns out to be impossible in our
case. Oscillatory guiding center excursions from the magnetic
surface would be tolerable, and there is confidence that this
can be arranged with a weak radial electric field for a central
confinement region. The aim in this study is to identify a
suitable magnetic mirror field to the considered higher order

long-thin expansion. This can enable designs of more com-
pact ‘short-fat’ mirror configurations with favorable radial
confinement. In addition, average minimum B properties for
gross plasma stability is achieved to leading order [7].

In our case, it is sufficient to consider leading order
expressions for the Clebsch coordinates:
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We are free to choose 0 0ig =( ) at the mid-plane z=0, and
near the axis and close to the mid-plane the expressions thus
approach x xx0 ( ) and y yx .0 ( ) Equations (3a), (3b) and
(4c) then gives the leading order expressions
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The case c c c 01 2= - = > corresponds to a mirror field (the
SFLM field) with straight non-parallel magnetic field lines
near the axis, where the magnetic field lines are parametrized
as x z z c x1 0= +( ) ( )/ and y z z c y1 .0= -( ) ( )/ A flux sur-
face with constant r0 has elliptical cross section near the axis

r
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2
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+
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⎞
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The ‘ellipticity’ (eccentricity or aspect ratio) is in this case
given by

z
z c

z c
R R

1

1
1 .m mell

2e =
+
-

= + -( ) ∣ ∣
∣ ∣

[ ]

Here, R z B Bm 0=( ) ˜/ is the mirror ratio along the axis. These
elliptical cross sections degenerate into curves (or infinitely
thin ellipses) at the focal lines z c=  where the magnetic
field becomes infinite. The confinement region is a finite field
region with a finite mirror ratio (a mirror ratio in the range
4–6 is representative and may provide a tolerable ellipticity).
For a given finite maximal value of a mirror ratio, the SFLM
could have minimal ellipticity properties for a minimum B
stabilized quadrupolar field, since it is to leading order a
marginal minimum B field, and a mirror ratio of 4 corre-
sponds to an ellipticity of only 13.9. Considerably higher
ellipticities can appear in mirror machines which have dif-
ferently shaped quadrupolar fields for the MHD stabilization
purpose. The flux tube has the characteristic quadrupolar
shape, where identical fields (in a non-disturbed case) are
obtained on opposite sides of the mid-plane after a 90°
rotation around the z axis. Numerical modeling of 3D coils
predict that compact superconducting coils can be designed to
create the field in the confinement region [25], with sufficient
space available for a reactor blanket region in between the
coils and the vacuum chamber containing the plasma, see
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figure 3. The aim of the quadrupolar magnetic field is to
appproach an average minimum B field for stability of the
flute mode. The striking stabilization effect has since its
introduction in the 1960s been confirmed in numerous
experiments at different laboratories.

Returning to the magnetic field strength, we find with
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where we have substituted

z T T d. 51 2
3h h=( ) ( ) ( )

With x r cos0 0 0q= and y r sin ,0 0 0q= we find from stan-
dard trigonometric relations
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To leading order z is a function only of W, i.e.
z c W cBtanh .0= [ ˜ ( )]/ The quantities S S S, ,1 2 appearing in
the expression for B r W, ,rest 0 0q( ) are therefore functions of
W, and radial drifts are associated with the dependence of
B r W, ,0 0q( ) on the Clebsch angle .0q The cos 2 0q depend-
ence is eliminated if S S ,2 1= while the cos 4 0q dependence is
eliminated if S S S .1 2= + Equations (5a)–(5c) prohibit that
both of these equations are satisfied simultaneously: In the
case c c c 0,1 2= - = > equations (5a)–(5c) can with

c c z 62 2 2= -˜ ( )

be written (see appendix A for derivation)
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A choice to keep the radial drift small is S S .2 1= That case
corresponds to 0h h= and S S S H z6 6 .1 2 0= = = ( )/ / We
then find
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where W W cB .0= ( ) Thus B 0q¶ ¶/ is finite, and therefore a
radial magnetic drift is present, although we have eliminated
the drift associated with the term cos 2 .0q The function
c c z4 2 2 2+( ) decreases slowly from unity at the mid-plane
and approaches ¼ as z c.  The magnetic radial drift
effects are therefore somewhat weaker away from the mid-
plane for this magnetic field. The radial component of the
magnetic drift,
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is zero for the angles p 4,0q p= / where p is an integer and
bars are used here to denote gyro center values. At a first
glance, the worst added radial drifts may be expected for
‘sector locked’ particles, i.e. particles locked into angle sec-
tors in between the values p 4,0q p= / while a tendency for
cancellation of the radial excursions is expected for particles
that encircle the axis (in passing, this view is also in line with
a corresponding cancellation tendency provided if a radial
electric field would be added). However, the lowest order
drifts near the axis approach zero for this field (each gyro
center moves along a single magnetic field line to leading
order), and it is therefore not immediately clear whether or not
particles encircle the axis in the higher order solution. In fact,
the poloidal magnetic drift component for this field
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has a definite sign, and all gyro centers encircle the axis in
opposite directions for charges with opposite signs. No par-
ticles are sector locked, and the cancellation tendency acts on
all particles. This is more transparent by noticing that the drift
equations in this field for all particles have the first integral

I r a1
cos 4

3
const. 9r 0

0
1 4q

= ⋅ - =
⎛
⎝⎜

⎞
⎠⎟˜ ¯

¯
( )

/
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This ensures a bounded radial motion. The first integral cor-
responds to an intersection of regions with constant B and
regions with constant W, and the guiding centers move along
trajectories with the constancy of Ir̃ intact. The constant Ir̃
corresponds to a mean drift surface of the particle motion
(projected on a surfaceW=constant), where radial excursion
excursions from the mean magnetic surface are determined by
equation (9a). Although the constant Ir̃ ensures a bounded
radial motion, the radial drift in this magnetic field accumu-
late a moderate radial excursion from the mean flux surface
(the poloidal magnetic drift is too slow to provide a fast
distinct cancellation). The radial excursions are bounded by

r

I
b

3

4

3

2
9

r

1 4
0

1 4

 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠˜ ( )

/ /

or approximately r I0.93 1.11,r0< <˜/ which roughly is a
20% relative spread of the radial coordinate along the gyro
center trajectory. These radial excursions are illustrated in
figure 4. Reduction of the radial excursions to much smaller
values is expected if a radial electric field is added, where the

BE B 2´( ) velocity needs to be somewhat faster than the
slow poloidal magnetic drift to be efficient. For this particular
field, the voltage demands would be exceptionally small to
produce such a radial electric field. In Cartesian coordinates,
the first integral can be written

I
x

c z

y

c z

x

c z

y

c z

2

3
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const.

r

4 4 2 2 1 4

=
+

+
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˜
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A radial magnetic drift thus appear to higher order in the
expansion. The particular field considered here gives only a
minor radial magnetic drift. This field, which is an extension
of the SFLM field to higher order in the long-thin expansion,
has properties which seems valuable as a base for a high
quality confinement magnetic field, since magnetic drifts are
minimized and there is the option to add a controlled radial
electric field to achieve ideal radial confinement in the col-
lision free approximation, with each guiding center moving
close to a magnetic surface in the central confinement region.

We complete this section by writing down expressions
for the magnetic field components;

B
x

c z
B z a1 , 10x xe=

+
⋅ +˜( ) ( ) ( )

B
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c z
B z b1 , 10y ye= -

-
⋅ +˜( ) ( ) ( )
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Here,
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where h z c z c z5 32 2 2 2= + +( ) ( ) ( ) and it is straightfor-
ward to calculate ze to one order higher. The magnetic field
lines are not perfectly straight to the higher order in the
expansion. This can be seen from a higher order expression
for the Clebsch coordinates (see appendix C for derivation).
Explicit formulas are with x cx
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+
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˜
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From this we observe that the ratio B By x is not constant
along magnetic field lines, i.e. this ratio is not solely a
function of the Clebsch coordinates in the higher order
solution, and the field lines therefore deviate slightly from
straight lines.

The arc length along B, derived in appendix B, is given
by the expression

s z
x

c z
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c z

z k x
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z k x y
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Figure 4. Contour in the mid-plane of a curve r Ir0 = ⋅˜

1 ,cos 4
3

1 4
0- q -( ) /

where Ir̃ is constant. The projection of the drift

surface has this shape for all particles when only the vacuum
magnetic field contributes to the drift. At the mid-plane, the flux
surface cross sections have a circular shape, and the figure illustrates
how the drift motion is bounded into a region between two flux
surfaces. The radial excursion from the mean flux surface could be
reduced to almost zero by adding a weak radial electric field.
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where k k k, ,1 2 are constants. A part from corrections of order
,6l this formula gives s r c1 4 ,0

4 4 = +∣ ∣ ( ) and thus
s 1. >∣ ∣ The leading order terms correspond to s B,  ˆ

but we obtain s 1 >∣ ∣ when higher order terms are included,
and s therefore also contains components perpendicular
to B.ˆ

4. Poloidal drift and effects of a radial electric field

The magnetic drift in the poloidal direction given by
equation (8c) is incredibly small as a result of the reduction of
the drifts in this particular magnetic field. This can be illu-
strated with a representative parameter case with a particle
energy of 20 keV, r 1 m,0 = c 10 m,= and B 1 T,= which
gives the astonishingly small estimate

r
t

a
d

d
1 m s . 110

0

magn.drift

1q
< -¯

¯
( )

Other effects, such as field errors or radial electric fields,
would certainly overrule this velocity even at vanishingly
small strengths of those effects. In the vacuum magnetic field
considered in this paper, the oscillatory radial magnetic drift
has a similar small magnitude as the magnetic drift along the
poloidal direction. The property that each guiding center
moves along a single magnetic field line is only slightly
disturbed in the higher order solution by such a vanishingly
small magnetic drift.

In this vacuum magnetic field, the evolution of the gyro
center radial coordinate obeys

r r
b

d

d 4

1

1
. 110

0 magn.drift

0

d

d

cos 4

3

cos 4

3

0

0

0q
= -

-

-

q
q

q

⎛
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⎞
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( )¯
¯

¯ ( )
¯

¯

¯

The order of magnitude of the ratio between the changes rd 0¯
and d ,0q̄ in case that only vacuum magnetic drifts are present,
can be estimated from this formula, and the expression for the
first integral Ir̃ can be derived. Presence of other poloidal
drifts can cause profound modifications in d 0q̄ and in the ratio
rd d0 0q¯ ¯ and change the situation drastically.

To see this, let us add a radial electric field in the con-
fining region, where we for simplicity assume a quadratic
dependence on the flux radius in the plasma confining region:

r

a
.0

0
2

2
f f=

Here, the constant 0f is the electric potential at the plasma
boundary r a.0 = With Bv E B ,E

2= ´( ) the ratio

r
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r
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d
11E
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0 0
e

q

q
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 ⋅

⎛
⎝⎜

⎞
⎠⎟¯

¯

¯ ¯ ( )

is small even for modest values of ,0f and the E×B drift
becomes the dominant poloidal drift in the considered
magnetic field. Even a 0f as small as a few volt (sign does not
matter) would be sufficient to make the E×B drift the

dominant poloidal drift in this particular field. If we increase
the strength of 0f to, say 200 V, there are also margins to
compensate for other disturbances such as field errors in the
magnetic field design (for instance, geometrical constraints on
the coil design is accompanied with unavoidable field errors
which grow if the mirror ratio is increased or the device is
shortened). The evolution of the radial gyro center coordinate
is with such a radial electric field then determined by

r r r

d

d

d 3
sin 4

3
sin 4 ,

11

E E b
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E B

0
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0
0

0
0
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e q e q» - » -á ñ
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⎛
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⎞
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¯
¯

¯ ¯ ¯ ¯

( )

where E beá ñ and r b0á ñ are longitudinal bounce averages. The
corresponding solution

r r e1
cos 4

12
11b E b0 0

0e
q

= á ñ ⋅ + á ñ
⎛
⎝⎜

⎞
⎠⎟ ( )

reveals that the radial excursions from the mean magnetic
surface r b0á ñ is reduced by a factor .E beá ñ For moderate values
of the potential ,0f this means that the radial excursions can
be neglected. We may rephrase this observation by stating
that a magnetic field for the central confinement region is
identified where each gyro center moves close to a single
magnetic surface with minor deviation.

5. Minimum B properties

Flute mode displacements are large scale ‘kink’ perturbations
of the plasma in mirrors, which need to be controlled.
Minimum B, or average minimum B, fields have for a long
time been used in mirror experiments to stabilize flute modes.
The anchor cells in the Gamma10 tandem mirror have mini-
mum B fields with a strong ellipticity 50 .elle »( ) A strict,
local minimum B field would satisfy B r 0,0 ¶ ¶/ but an
inspection of equation (8a) shows that B r0¶ ¶/ is negative for
that field, although the leading terms in the long-thin expan-
sion corresponds to a marginal condition with B r 0,0¶ ¶ =/
so the minimum B criterion is only ‘mildly violated’ by the
terms in the higher order expansion. In equation (8a) this is
revealed by the smallness of the factor r c .0

4 4 Other effects,
for instance line tying or gas dynamic stabilization, which is a
main motivation for the GDT project, may for this reason be
capable of stabilizing the flute mode. Wall stabilization could
be important, although the effect is somewhat weakened in
mirror geometry by the smaller induced wall currents. Shear
plasma rotation, associated with a radial electric field chan-
ging sign at a specific flux radius, has also been used in
mirrors to improve confinement and control the evolvement
of flute mode displacements. A robust option could be to
strengthen the quadrupolar field near the axis, so that the
quadrupolar field corresponds to a field with B r 00¶ ¶ >/
instead of only a marginal minimum B field for the leading
order solution near the axis. Aside from that such a choice
would make our analysis more complex, a negative physical
aspect is that it would increase the ellipticity of the flux tube
cross sections.
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We will here continue our study with the SFLM field as
the leading order solution, and investigate if other choices for
the quantities S S S, ,1 2 could lead to more favorable minimum
B properties (appendix B give a clarification on how the arc
length in these equilibria are connected with a common
formula). If the resulting flux surfaces would be concave (i.e.
favorable) or convex may not be obvious beforehand, since
the curvature of the field lines is zero in the leading order
SFLM field. We will show that the expansion with the SFLM
field as the leading order solution leads to convex flux sur-
faces. For the analysis, we substitute

w S S S
w

S S w S S S3 ,
4

, .0 1 2
2

1 2 4 1 2= + + = - = + -( )

Then B B W
r

w w w
8

cos 2 cos 4 ,0
4

0 2 0 4 0q q= + ⋅ + +( ) ( )
and a local minimum B criterion is

w w w acos 2 cos 4 0. 120 2 0 4 0 q q+ + ( )

This inequality would imply B r 00 ¶ ¶/ for all Clebsch
angles if w 00 > and w w w .2 4 0+∣ ∣ ∣ ∣ However,
equations (7a)–(7c) imply conditions on w w w, ,0 2 4 which
may rule out any possibility to find a minimum B field.
Equations (7a)–(7c) yield with 1 0h h h= -
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The equations become more transparent with the substitutions
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The case G=0 is recognized as the solution with w2=0.
Let us continue with the case w 0,4 = which, with k4 a con-
stant, yields

G
z

z

z
k4

1

1 1
.

4 2 4= -
+ +

+
⎛
⎝⎜

⎞
⎠⎟

However, that gives w 00 < near z=0. More generally, we
see that the inequality (12a) cannot be satisfied with w 00 >
near the mid-plane for any choice of G, since with

G z c z z, 0k
k ( )

we need k 1= - in equation (12b) to obtain w0>0, but then
w4 becomes singular near the mid-plane, as seen from

equation (12d). We conclude that the inequality (12a) cannot
be satisfied in the higher order expansion for any vacuum
field where the leading terms correspond to the SFLM field.

The case w2=0 has the advantage that the magnetic
drifts are exceptionally small and a bounded radial motion for
all particles is prescribed by the existence of the invariant I .r̃

Wall stabilization and line tying could be sufficient to stabi-
lize the flute mode. Strengthening the quadrupolar magnetic
field near the axis is an additional option.

6. Inclusion of finite β field with use of radial
invariant

Determination of contributions from the plasma currents to
the magnetic field can conveniently be carried out (to first
order in β) with the aid of a radial invariant in solutions of the
Vlasov equation, provided the radial magnetic drifts are
negligible. It will be seen that the resulting expressions cor-
respond to formulas obtained in a fluid approach with the
pressure P r B,0( ) depending on the flux coordinate and the
magnetic field modulus. We will also investigate possible
space dependencies of the electric potential in the plasma.

We assume arrangement of a confinement field, where
the gyro center of each particle is moving close to its mean
magnetic surface. We then need to carefully design a con-
fining magnetic field, supported by a proper electric field, to
achieve this goal. Such fields are identified here for quad-
rupolar mirrors. It may be mentioned that in toroidal geo-
metries, it is assumed that a nested flux surface system is
arranged. This is a necessary condition for confinement, since
the nested flux surfaces are a lowest order approximation for
the region where the gyro motion is intended to take place.
Nested flux surfaces can be a complex task to arrange for
stellarators, and, if field disturbances are included, also a
concern for almost axisymmetric tori such as tokamaks.
Another obstacle is that existence of nested flux surfaces in
stellarators does not guarantee a radially bounded particle
motion, and often a given set of nested flux surfaces has poor
radial confinement due to radial magnetic drifts. A radial
electric field, which may spontaneously be generated from a
vanishingly small transient radial loss of charged particles,
has theoretically been shown to provide quite a dramatic
favorable effect on the confinement in a mirror embedded in a
stellarator geometry [24]. Essentially, if flux surfaces exist in
a stellarator geometry, confinement for most of the particles
may be arranged by the generated radial electric field, but this
mechanism is less efficient for particles with higher energies,
which are predicted to be lost, despite the action of the
spontaneously generated electric field [24]. Although radially
bounded orbits could be arranged for a large class of particles
in toroidal confinement, it is often inaccurate to state that each
gyro center moves close to its mean magnetic surface.
Deviations between drift and mean magnetic surface as well
as banana widths can be large.

In open mirror geometries, there may be less concerns for
radial confinement (the longitudinal loss is usually expected
to be a dominant loss channel, but the radial loss may become
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comparable if gross instabilities or strong radial drifts are not
eliminated). The existence of flux surfaces is straightforward
in mirrors, but gyro center drifts (due to deviation from axi-
symmetry) can result in radial loss of particles [5]. A bene-
ficial option in open geometries is the availability to arrange a
radial electric field by biased electric potential plates outside
the confining region, where the magnetic field lines intersect
the plates. The radial electric field and the associated weak
poloidal plasma rotation can be controlled by the biased
potentials. This beneficial influence of biased plates is pre-
dicted to work also on particles with higher energies in mirror
devices, but it is essential to keep radial magnetic drifts within
a tolerable range.

A configuration is assumed where each guiding center
moves close to its mean magnetic surface. In case magnetic
drifts would tend to ruin this radial confining property, we may
improve the situation by adding a radial electric field. Two
standard constants of motion, i.e. the magnetic moment μ and
the energy e of the particles, can be used to describe long-
itudinal confinement to a region B q :e f m e m< - »( )/ /

mv

B
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x
,

2
, 13

2
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v v q
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b

x v x,
2 2

.
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2 2
2

e f m f= + + = + +^
( ) ( ) ( )

( )

If the particles would move close its mean magnetic surface, the
gyro center radial Clebsch coordinate r x v,0 ( ) is a convenient
third constant of motion, compare [4, 5]:

r r r cx v, const. 13g0 0 0,= - »( ) ( )

Here, r x0 ( ) is the radial Clebsch coordinate of the particle and
r x v,g0, ( ) is the small but fast ‘gyro ripple’ associated with the
gyro oscillations of the particle around the magnetic field:

r
x

r

v
x

y

r

v
y

d

x v, cos sin .

13

g g g0,
0

0
0

0

0
0j a j=

W
 + -

W
^ ^( ) ¯

¯
∣ ¯ ∣ ( ) ¯

¯
∣ ¯ ∣

( )

Here, qB mW = is the gyro angular frequency, gj =

td
t

t

0
ò W is the gyro angle for the gyro motion around the

magnetic field lines and x y x ysin 0 0 0 0a =  ⋅   (∣ ∣∣ ∣) is
finite when x0 and y0 are not in perpendicular directions.
Existence of a third invariant in this form assures radial con-
finement (in passing, it can be noticed that constancy of the
second adiabatic invariant J does not generally imply radial
confinement [26]). In a collision free idealization, we therefore
consider an equilibrium described by distributions functions of
the form

f F r ax v x v x v x v, , , , , , . 140e m=a a( ) [ ( ) ( ) ( )] ( )

The label α is used to distinguish ions and electrons. For small
gyro radii, this can be written [4]

f F r
F

r
bx v, , 14g0,

0
= -

¶
¶a a

a( ) ( )

where F F r, , 0e m=a a ( ) corresponds to the values at the
position of the particle. The particle location is displaced
radially from the guiding center by the gyro ripple term
r x v, .g0, ( ) The term Fa contributes to the plasma density and
the pressure tensor components, but not to the plasma currents
perpendicular to the vacuum magnetic field B .v The second
term r F rg0, 0- ⋅ ¶ ¶a( ) determines the plasma currents, which
turns out to be associated with diamagnetic currents balancing
pressure gradients. The moments of the distribution function
can be calculated by using [4]

v v v vd d d ,g
3

0 0

2

ò ò ò ò j=
p

-¥

¥ ¥

^ ^

where gj is the gyro angle. The densities are determined by

n r B F v, , d .0
3òf =a a( )

With these distribution functions, the densities are functions
of r B, , ,0 f( ) which reflects the spatial dependencies of the
constants of motion. This implies that the quasi-neutral
electric potential is of the form

r B a, . 150f f= ˆ ( ) ( )

More specifically, if we for illustration consider ions with a
positive unit charge and negative charges carried by the
electrons, quasi-neutrality in the plasma implies that the equation

n r B n r B b, , , , 150 0f f=+ -( ) ( ) ( )

can be used as an approximation for the Poisson equation
q n n ,e0

2e f = ⋅ -+ -( ) where qe is the negative elementary
charge of the electron. As is well known, the quasi-neutral
solution has typically a high accuracy in the plasmas of interest
here, apart from regions with vanishingly small plasma densities
(sheath potentials can form in such regions). This quasi-neutral
equation can only have a solution if there exists an implicit
function of the form of equation (13a), i.e. r B, ,0f f= ˆ ( ) if the
distribution functions are determined by the three invariants in
equation (14a). The derivatives of the implicit function can for
given expressions of n r B, ,0 f+( ) and n r B, ,0 f-( ) be calcu-
lated from

r B

r

n n r

n n
c

,
150

0

0f
f

¶
¶

= -
¶ - ¶
¶ - ¶

+ -

+ -

ˆ ( ) ( )
( )

( )

and a corresponding formula for r B B, .0f¶ ¶ˆ ( ) Assuming
smoothness conditions, the implicit function theorem assures
that these derivatives exist if n n f¶ - ¶+ -( )/ is finite, which is
the typical situation (for instance, this is satisfied if F 0e¶ ¶ <a/
everywhere). With quasi-neutrality, the densities are functions of
only r B, ,0( ) where

n r B n r B r B n r B, , , , ,0 0 0 0fº ºa a( ) [ ˆ ( )] ( )

and corresponding relations hold for other quantities. The
dependence on B reflects the possibility for longitudinal
confinement based on the magnetic mirror effect (an ambipolar
potential sheath near the end walls also add to longitudinal
confinement of electrons in mirrors). It has previously been
demonstrated how experimental profiles for the density and the
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temperatures could be adjusted to the distribution functions with
the aid of local Maxwellians distributions and Abel transforms.
Often a local Maxwellian with a Boltzmann density distribution
n r B, ee

q k T r B0
0

,e B e 0f-( )( ) ( )/ is appropriate for the electrons in the
plasma. Equation (13c) can be written as a response relation to
an applied change in the electric potential governed by

n

r

n

r

n n

r

q
k T k T

n
r

d
1 1

, 15

B B

e
B B

0 , 0 , 0

0

f
f

f

¶
¶

=
¶
¶

+
¶ -

¶
¶
¶

» +
¶
¶

f f

- + + -

+ -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ˆ

ˆ
( )

where the right end neglects the ion response and assumes nearly
Boltzmann density distributions. An interpretation of this
formula is that the radial dependencies of the electron density
adjust to this formula as a ‘plasma polarization’ [6] response to
an electric potential r B,0f̂ ( ) in the plasma, where the radial
variations of r B,0f̂ ( ) can be externally controlled by biased
potential plates. In the Baker–Hammel studies, a plasma motion
enforces a transverse electric field in the plasma by the
polarization mechanism. The scope is the opposite cause here,
i.e. where an applied electric field enforces a plasma motion (a
rotation in this case) by the plasma polarization mechanism. The
potential jump near wall, i.e. the ambipolar potential, has to be
considered for the biased potentials.

The perpendicular pressure is of the form

P r B
mv
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With this distribution function, the plasma current along the
vacuum magnetic field is zero, while the perpendicular

plasma current q f vj v d,
3ò=a a^ ^ is calculated from
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¶
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The perpendicular current is thus associated with the ‘gyro
ripple’ of the distribution function. The term Fa does not
contribute to this current, since the gyro angle integral only
contains oscillatory terms. Carrying out the velocity integra-
tions leads to
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The current is perpendicular to the vacuum magnetic field Bv

and has no component along r .0 Summing up currents and
perpendicular pressure tensor components from all charges,
this expression approaches the force balance Pj Bv´  ̂ ^
[4], if the distribution functions are reasonably close to local
Maxwellian distributions and the magnetic gradient drifts are
small. Under similar conditions, we obtain [4]

j B
2

.0 vm
b

  ´ -⎜ ⎟⎛
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⎠

Here, P B2 0 v
2b m= ^ is a local beta value and Bv is the

vacuum magnetic field. From this, the total divergence free

magnetic field is given by
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Coulomb integral
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A long-thin expansion for quadrupolar mirror fields for Wb
has been derived in [5].

Finally, it may be instructive to see how the Baker–
Hammel results [7] fit into our Vlasov system. For clarity we
consider distributions of the form F F r, e ,k T r0

0 B 0m=a a
e-( )( ) ( )/

and obtain for the mean velocities q nu jºa a a( )

q n

P r B

r r

r

B
u

B1 ,
, 17, 0

0 0

v 0
2

f
=

¶
¶

+
¶
¶

´ 
a

a

a^
⎡
⎣⎢

⎤
⎦⎥

( ) ˆ
( )

where the last term in the parenthesis corresponds to the
E×B drift (although the pressure gradient term contributes
to the mean velocity, it does not correspond to a drift of the
guiding center). When the diamagnetic drifts can be neglec-
ted, we find the common drift Bu E B 2 ´a ( ) or the ‘Hall
effect’ formula E u B 0+ ´ a (i.e. the Lorentz force
vanishes in the rest frame of the plasma). This is the Baker
and Hammel result for the electric field produced by the
polarization mechanism [6] to facilitate a plasma motion
across a magnetic field. The ambipolar sheath should be
accounted for in the biasing design. It may be instructive to
notice that the ambipolar sheath potential had no prominent
influence on the Baker–Hammel experiments on a plasma
beam penetrating a magnetic field. For the biased plate
arrangements, this suggests, despite the presence of the
ambipolar sheath near the wall, that the potential variations
between various biased plates are mapped to a corresponding
potential variation between flux surfaces in the confinement
region, thereby producing a plasma rotation which is con-
trolled by the biased potential plates.

The given formulas for the considered kind of Vlasov
equilibria has a resemblance with a fluid approach based on a
pressure profile of the form P r B, ,0( ) combined with a quasi
neutral electric field which includes the Hall effect [27]. In a
fluid description, the potential r B,0f̂ ( ) in the plasma is an
independent function which can be adjusted to the exper-
imental situation. Heavy ion beam probes is an available
method to measure the electric potential in a plasma.

7. Discussion

The model field we have calculated has singularities for
z c,=  and could therefore only be relevant for some region
z zm∣ ∣ with a finite mirror ratio where z c.m < The model
field in this confinement region with a finite mirror ratio of
R 4m » could be approached by a continuous field generated
by selection of 3D superconducting coils (these coils would

14

Plasma Phys. Control. Fusion 59 (2017) 115001 O Ågren and V E Moiseenko



also generate the field in the flux expanding regions beyond
the mirrors). Such coils have already been calculated for a
more long-thin case, compare [25] where profiles of magnetic
field components, field errors, cross sectional views etc are
presented. Detailed parameter values in [25] are 2.1 m for the
inner radii of the coils and 2.89 m for the coil outer radii. The
vacuum chamber radius (1 m) is large enough to situate a
plasma with a mid-plane radius of 0.4 m, where the flux tube
evolves to an elliptical cross section near the magnetic field
maxima. The cross section near the field maxima in figure 5
gives a qualitative view of the plasma shape near the mirror
location. The compact ‘fish bone’ coils [25] shown in figure 3
provide sufficient space (more than 1 m wide) in the annular
region bounded by the vacuum chamber and the inner coil
radius for necessary reactor core elements.

Flute mode stability has been investigated both for a
pressure peaking at the mid plane as well as for a sloshing ion
distribution with density peaks located some distance apart
from the midplane [25]. In the stability analysis, the pressure
approaches zero outside the confinement region. The con-
finement region is considered to be a region with a magnetic
field providing flute mode stability (by satisfying a pressure
weighted average minimum B criterion). Another character-
ization of this confinement region is that each gyro center

should move close to its mean magnetic surface (a radial
electric field, in combination with an adequate magnetic field,
could be beneficial to approach such a situation).

There is a class of particles in the warm plasma confined
by the electric potential in between sloshing ion peaks.
Longitudinal variations of the electric potential may also lead
to more local trapping of Yushmanov ions, to a neighborhood
of a local minimum of the guiding center potential
U B q .gc m f= + A radial electric field of reasonable strength
can supress radial excursions of such particles when the
quasi-neutral potential is of the form r B,0f̂ ( ) (the corresp-
onding drift would not lead to a net radial drift). Derivations
are given in appendix D.

The flux tube cross section computed from the coil set
evolves from a circular shape at the mid plane and compresses
to a an elliptical shape near the field maxima, followed by an
expansion beyond the mirrors with a nearly circular shape of
the flux tube cross section near the end tank walls [25]. A
nearly circular shape of the flux surface cross section at the
end tank is obtained by magnetic shaping with appropriate
coil parameters including a circular coil with a reversed cur-
rent direction behind each end tank. The nearly circular flux
tube cross section shape is revealed by the result that the
function g z( ) in [25] approaches small values near these
positions, compare figure 5(b) in [25]. The nearly circular
shape enable arrangements of a large number of indepen-
dently biased potential plates near the end tank walls. Typical
electron gyro radii near the end tank wall are reasonably small
(less than 1 cm), while the large ion gyro radii (about 50 cm)
provide an evenly distributed heat load over the end tank wall
areas (our design criteria for the heat load is less than
1 MW m 2- for a 1.5 GW hybrid reactor with 10MW fusion
power). The small ratio of the electron gyro radius to the end
tank wall radius is an arrangement which may admit quite a
detailed control of the radial variations of the electric potential
in the confinement region. The goal is that the electric field
should act like a ‘glue’ to force the ion center orbits closer to
their mean magnetic surfaces.

The potential control relies on the plasma polarization
mechanism [6], which needs a finite (although small) plasma
density in a region near the end tank walls, where a potential
change at biased plates is intended to propagate along field
lines to the confinement region. An estimate on the density
near the end tank wall for the plasma polarization to take
place can be found from a condition that the electron plasma
frequency q n mpe e

2
0w e= ( ) has a larger magnitude than

the cyclotron frequency qB m ,e eW = / i.e.

n m
m

B B T10 2 10 m ,
e

3 0 2 19
end tank
2 15 3e

> » ´ » ´- -[ ] [ ]

where in the last step we have considered an end tank wall
radius around 4 m and a representative mid plane field
strength of B 1.25 T.0 = Densities well above such small
values should be expected outside the confinement region
(apart from the thin ambipolar sheath adjacent to the end tank
walls). Radial drift loss exterior to the central confinement
region is a selection mechanism between the regions, which
could be viewed as an effect that defines the space for

Figure 5. Qualitative cross sectional view near the mirror location
with R 4m = with the parameters used in [25] for a hybrid reactor
case. The inner circle corresponds to the vacuum chamber (radius
1 m). The cross section of the plasma surface, which is circular with
a radius of 40 cm at the mid plane, has evolved to the elliptical cross
section shown near the mirror location (the semi axis of the
corresponding flux surface grows to 87 cm in the recirculation region
beyond this location, but is still kept inside the vacuum chamber
radius, see [25]. The outer circle in the figure corresponds to the
inner radius (2.1 m) of the superconducting ‘fish-bone’ coils shown
in figure 3. The outer radius of the coils (2.89 m, not shown in the
above figure) is less than 3 m. The arrangements admit a sufficiently
wide space (more than 1 m wide) for placing necessary elements of a
reactor core in the annular region between the coil inner radii and the
vacuum chamber. These elements include a 15 cm core expansion
zone adjacent to the first wall, followed by a 22 cm wide region
containing nuclear fuel and eutectic lead bismuth coolant, a neutron
reflector region (about 50 cm wide), a tritium breeding region, with
parameters consistent with the neutron computations in [20]. There
is also space left for additional neutron shielding of the super-
conducting coils.
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confinement. As shown in appendix D, omnigenous magnetic
fields near the axis can be constructed in a transition region
towards the expander region, which is bounded by the central
confinement region and the maximal B on a flux surface.
Therefore, neoclassical effects in the transition region may be
limited to a small annular region, as depicted in figure 1. A
rapid loss of ions in this annular region is not expected to be
important for the overall power balance, in cases when the
volume and particle number in this annular region is small. In
the end tank region, power consumption is also expected to be
small with adequate control of density and impurities.

Neoclassical effects could potentially be a threat for a
class of particles appearing in the areas where the magnetic
field strongly deviates from the straight-field-line shape. This
is considered in appendix D. Yushmanov ions, which are
longitudinally trapped in a region close to the mirror, can
have large radial excursions due to magnetic drifts. Their
number cannot be high since this area is small (see [23]).
Furthermore, as shown in appendix D, the orbits of such
particles could be cured by the radial electric field, as earlier
shown for a much stiffer case with a magnetic mirror con-
figuration corrupted by a stellarator field [24]. For a fusion
reactor, a modest voltage difference (less than 1 kV) is esti-
mated to be sufficient for a strong reduction of the radial
excursions of Yushmanov ions (see appendix D). Thus, the
essential neoclassical effects from Yushmanov ions and ions
in the transition region may be limited to ions in a thin
annular transition region, and their influence on the overall
power and particle balance could be small.

Field errors, in particular the deviations from the calcu-
lated field and a field generated by coils, are presented in [25].
Such field errors would increase with a shorter device, where
reproduction of the desired field gradients are harder to
accomplish. Field errors give rise to magnetic drifts, which
could result in loss of particles if no action is taken to cure
this. A suggestion in this paper is that a radial electric field
could be a tool to eliminate radial drift loss in quadrupolar
mirrors, and thereby provide a higher margin on field errors.
Field errors could be decreased substantially by shrinking the
annular ‘reactor region’ filling the space between the vacuum
tank and the inner coil radius, which would be an option for a
stand alone fusion device, or even more so for a short device
filled with an ordinary hydrogen plasma (i.e. no deuterium or
tritium fuel) with the restricted aim to demonstration adequate
plasma confinement.

When the gyro centers move close to their mean magn-
etic surfaces, a Vlasov description with the gyro center radial
coordinate leads to a close resemblance with the magnetic
field equations obtained from fluid approaches [23, 27]. A
difference from the fluid models in [23, 27] is the addition of
a quasi-neutral potential, where the Vlasov system is capable
of modeling plasma rotation generated by the plasma polar-
ization mechanism. This common E×B drift is not
accompanied by an electric current for a quasi-neutral system,
and the rotation has therefore no direct impact on the magn-
etic field.

Earlier studies have been investigating proper shaping of
mirror fields for the reduction of radial magnetic drifts. An

example is [23], where investigations are made for a tandem
mirror with a nearly axisymmetric central cell. In [23],
transition regions are treated with an aim to reduce neo-
classical effects (compare also appendix D). The role of radial
electric field is typically not covered as thoroughly as the
magnetic field in earlier studies, which usually were dedicated
to overcome neoclassical loss by magnetic field shaping.
Combining optimal shapes of magnetic field with a controlled
electric field may be a tool for further advancement in
avoiding neoclassical loss [4, 24].

8. Conclusions

A vacuum magnetic field with minimal magnetic drifts has
been derived to a higher order in a long-thin expansion. One
purpose is to enable more ‘short-fat’ configurations, where the
ratio of plasma radius a at the mid-plane to the length 2c
could be increased. Previous derivations to a lower order may
be adequate for a c 0.1,</ while inclusions of the higher
order terms may admit extension of the parameter range up to
a c 0.3.</ Design of superconducting magnetic coils for a
shorter configuration can be based on the 3D superconducting
coil design already computed for the longer device. With a
plasma radius of 0.4 m, the length 2c could then be decreased
to about 3 m.

The leading order solution has no magnetic drift, and
each guiding center moves along a single magnetic field line.
A slow magnetic drift is revealed by the higher order
expansion terms, but the velocities of the magnetic drifts are
exceptionally small (less than 1 m s−1 for particles with
representative parameters for a fusion device). A first integral
Ir̃ for the drift motion has been derived when only vacuum
magnetic drifts are taken into account in the drift equations,
and the constant Ir̃ applies to all particles in the drift ordering.
The existence of the constant Ir̃ implies that all particles have
a bounded radial motion. The constant Ir̃ corresponds to
moderate radial excursions from the mean magnetic surface
with a relative deviation of r r 10%0 0D » / along the
guiding center orbits.

The radial excursions can be drastically reduced by
adding a weak radial electric field. This is also expected to
enable a higher tolerance towards magnetic field errors, with
radial confinement maintained. The reduction in radial
excursions is associated with the small ratio Ee of the
magnetic to the E×B drift along the poloidal direction. The
reduction parameter Ee can be controlled by electrically
biased plates outside the confinement region, and exception-
ally small potential variations are needed for this control in
the considered magnetic mirror field. A configuration is
identified where each gyro center moves almost arbitrarily
close to its mean magnetic surface. This result is a motivation
to use the gyro center radial coordinate as a constant of
motion in a Vlasov description with a finite .b Vlasov equi-
libria are constructed based on the gyro center radial constant
of motion, in addition to the conventional magnetic moment
and energy invariants. Those Vlasov equilibria turn out to
correspond to Hall fluid models based on pressure profiles in

16

Plasma Phys. Control. Fusion 59 (2017) 115001 O Ågren and V E Moiseenko



the form P r B,0( ) combined with a quasi neutral electric
potential in the form r B, ,0f̂ ( ) where the profiles can be fitted
to an experimental situation. The Vlasov systems can flexibly
model plasma rotations, where biased potentials offer a con-
trol tool. This plasma rotation can be associated with a plasma
polarization mechanism, which was thoroughly investigated
by Baker and Hammel for plasma flows across a magnetic
field [6].

For the geometrical arrangements of biased plates, it is
important to trace cross flux tube cross sections at the end
tank. Short-circuiting between biased plates by the high
electron mobility along magnetic field lines must be avoided.
Radial electric fields of modest strength (voltage difference
less 1 kV) has been considered in this paper. With adequate
magnetic (with suitable coil arrangements) and electric field
shaping, neoclassical effects are strong only for a limited
population of ions located in a narrow annular transition
region between the central confinement region and the
expanders. The neoclassical effects are therefore expected to
be minor.

Compared to axisymmetric mirrors, quadrupolar mirrors
could have drawbacks on ellipticity, neoclassical effects,
limited mirror ratios and more complex coils, and these
obstacles need to be kept within a manageable range. Quad-
rupolar fields could be important for their stabilizing effect on
the flute mode. Minimum B properties have been analyzed.
All vacuum fields where the leading terms correspond to the
SFLM field are found to violate the minimum B criterion,
although the leading order solution corresponds to a marginal
minimum B field. Since only the higher order terms are
responsible for the violation of the minimum B criterion, the
criterion is only ‘mildly violated’. Other effects could there-
fore be sufficient to stabilize the mode. It is mentioned that
wall stabilization and line tying improve the flute mode sta-
bility. Another robust option is to adjust the strength near the
axis of a stabilizing quadrupolar field.
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Appendix A

We derive the solution of S S S, ,1 2 for the case S S .2 1= From
that, it is straightforward to obtain the general equations that

determine S S S, , .1 2 With c c c 0,1 2= - = > we find

z

T

T

T

T
K

c

T T

c
T T

d

d

7

4

1 1

1 1
.

1
2

2
2

2
2

1
2 0

2

2
2

1
2

3

2
3

1
3

h- = ⋅
D

-

+ D +

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( )

( )

Integration leads to
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where k0 is a constant. The irregularity at z=0 is avoided
with k0=3/4, and we obtain
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We continue with a calculation of S1 (z) from equations (5a)–(5c).
We introduce c c z2 2 2= -˜ and
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Some algebra results in R 2.1 = - Therefore the final formula
S H 61 0= / is recognized from
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Appendix B. Arc length along B and modulus B

For the description of the guiding center motion, it may be
instructive to compare the expressions for the strength of the
magnetic field, if we replace the scalar magnetic potential
coordinate with the arc length along the magnetic field
lines. This arc length s x( ) obeys s B 1, ⋅ =ˆ which in our
vacuum field yields s W B. ⋅  = With the long-thin
expansion
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and the corresponding expansion for W, this leads to, when
terms of order 6l are omitted:
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A comparison with equations (2g), (2h) shows that p z Pi i=( )
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With c c c2 1= - = - and with k k k, ,1 2 constants, , ,1 2g g g
are integrated to
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The expression for the arc length becomes with x cx

c z0 =
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˜ and
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The values of the constants k k k, ,1 2 have an influence on the
shape of the surface s x 0.=( ) It can be noticed that the arc
length somewhat surprisingly has a common expression given
by equation (B2d) in the considered magnetic fields, which is
valid for all choices of the ‘generator’ z .h ( ) A check shows
that the leading order terms correspond to s B,  ˆ but that

s 1 >∣ ∣ when higher order terms are included, and thus s
also contains components perpendicular to B.ˆ Apart from
corrections of order ,6l equation (B2d) gives

s
r

c
1

1

4
0
4

4
 = +∣ ∣

which confirms that the higher order terms give s 1. >∣ ∣
With the choice k k k ,1 2= = the expression for the arc length
becomes particularly compact:
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In this form, the higher order corrections to the arc length are
zero at the plane z k .1= -

We continue with a derivation of an expression for B in the
variables x y s, , .0 0 We neglect terms of order 6l and start from

B x y s B W x y s x S s

x y S s y S s

, , , ,

,

0 0 0 0 0
4

1

0
2

0
2

0
4
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where, with B z B W z :=˜( ) [ ˜ ( )]
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The first term on the rhs is expressed in the arc length by using
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2 2= -˜( ) ( ) Combining these three

equations result in
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Using the expansions (B1) and (2a) with equations (3a), (3b),
(3f), (3g), (5d) and (7a), (7b) add up to
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These formulas demonstrates that Si iG ¹ and S ,G ¹ which are
connected with the components perpendicular to B̂ of s. The
connection to the formulas with the scalar magnetic potential can
be interpreted from the integral relation between the scalar
magnetic potential of a vacuum field and the arc length;

W x y s B x y s s, , , , d
s x y
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or W s B,x y,0 0
¶ ¶ =( )/ which leads to
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The components perpendicular to B̂ is recognized from the two
last terms. In our case, it turns out that the arc length is not the
most convenient variable to describe the drift motion. The scalar
magnetic potential is more suitable when higher order expansion
terms are included.

Appendix C. Clebsch coordinates

We make the expansion
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Then the Cartesian components of B x yB 0 0 0=  ´ 
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Two of these equations are dependent in view of
B 0, ⋅ = which implies:
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Using these divergence free relations and the substitutions
b a3 zx2 1 e= - + and b a3 ,zy1 2 e= - + the second equation
becomes identical to the 4th equation, while the third equation
is identical to the first equation. The first and 4th equations
result in
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For the considered magnetic field, we have from
equations (10d)–(10f)
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Explicit formulas for the Clebsch coordinates are with
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Appendix D. Yushmanov and transition region ions
and end tank flux tube footprints

The magnetic field deviate substantially from the ideal field
calculated in a region where the flux tube expands, and these
field deviations have implications on radial drifts and neo-
classical transport. We therefore consider to leading order effects
on radial confinement from strong deviations from the ideal field.
Assume quadrupolar symmetry and consider leading paraxial
expressions: we analyze a symmetrical quadrupolar field satis-
fying B z B z .- =˜( ) ˜( ) Since B z ,B

z z1 1
0

1 2
=

g g+ +
˜( )
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this
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zog ( ) and z z z ,e o2g g g= -( ) ( ) ( ) where z ze eg g= -( ) ( ) is an

even function in z while z zo og g= - -( ) ( ) is an odd function in
z. With 0 0 0,e og g= =( ) ( ) the field lines are expressed by
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3g g l= + + +( ) [ ( ) ( )] ( ) ( )

y z z z y b1 O . D1e o 0
3g g l= + - +( ) [ ( ) ( )] ( ) ( )

Equations (2b) and (4c) give for the magnetic field strength
near the axis
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have z 0og º( ) and z 0e g ( ) in the confinement region. For
quadrupolar fields, z zo eg g∣ ( )∣ ∣ ( )∣ in the confinement region,
but in the flux expanding region beyond the mirrors, zeg ( )
grows to a large value near the end tank [i.e. 1 e

2g+ ( )
B B 1000 end tank » ], while z 1o eg g+( ) ( ) decreases to small
values (this ensures a nearly circular flux tube cross section near
the end tank walls). To analyze the guiding center orbit, we
need the modulus of B: From equations (2k) and (4c) follow
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Therefore, near the axis, this becomes with u z 1 :e eg= +( )
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Here, we can to leading order identify zeg ( ) and zog ( ) as
functions of W. In the variables r W, , ,0 0q( ) we find
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An inspection of this formula reveals that no magnetic radial
drifts appear near the mid plane. To analyze the drifts, we
assume an electric potential of the form r B, ,0f̂ ( ) which is
consistent with quasy neutrality for a configuration where
guiding centers move close to their mean magnetic surfaces.
The guiding center orbits in the equilibrium are constrained
by a constant energy U r B mv, 2,0

2e = + ( ) where U =
q r B B,0f m+ˆ ( ) is the guiding center potential. Equation (1)
then leads to
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The special case r B r, 00 0f¶ ¶ =ˆ ( ) yields with the help of
equation (D3)
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To estimate what this means, we consider a quadrupolar field
region near the mirror. A first inspection of a case where

0eg  and 1og <∣ ∣ would lead to
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However, the right-hand side then becomes singular for angles
satisfying cos 2 .o0q g= - A more rigorous analysis is obtained
by keeping eg finite and making the substitution
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Here, z 1s = ( ) have different sign on opposite sides of
the mirror. This leads to
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A class of ions (Yushmanov ions) can be longitudinally con-
fined to a region where the magnetic field increases towards the
mirror if the electric potential decreases along the same
direction. For a nearly Boltzmann density distribution, this
decrease in r B,0f̂ ( ) would be a consequence of a decreasing
density towards the mirror region. If the longitudinal bounce is
short enough, we may take zeg ( ) as a positive definite constant,
and in such a case we obtain the first integral

I r b1 1 cos 2 constant. D4Y 0 0e q= ⋅  - =g( ) ( )

A case with 1eg  leads to substantial radial excursions,
where the Yushmanov ions could drift across the flux surface
which is intended to define the plasma boundary, as illustrated
in figure D1. Such ions would be lost from confinement.

Let us investigate how the situation is changed when a
radial electric field is added. With a sufficiently strong radial
electric field applied, we again use the small parameter
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In this case, this parameter is estimated by E E
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Here, radial drifts are oscillatory obeying an evolution
equation which scales as

r
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q
e q» ( )

With a radial electric field applied, the amplitude of the radial
excursions of the Yushmanov ions are therefore expected to
shrink considerably; the ratio between the amplitudes is less
than .E

0e∣ ∣( ) To see what range of electric potential variations
would be required for this, we obtain as an order of magnitude
estimate,
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With the representative parameters T eV 20 keV,i =( )
r 1 m0 = and c 50 m= for a full scale fusion device, this
gives with 0.01E
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e
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A potential variation less than 1 kV can conveniently be
handled, and such potential variations may be able to trans-
form even these Yushmanov ion orbits (which may be close
to ‘worst case orbits’) into an ion motion restricted to a
neighborhood of the mean magnetic surface. The potential
variation needs only to be strong enough to counteract the
magnetic radial drifts (which are much smaller than the gyr-
ating velocities). As expected, the strength of the required
potential variation is therefore much lower than the temper-
ature measured in electronvolts, i.e. TV eVifD ∣ ( )∣ ( ) or
q k T ,B ifD ∣ ∣ which is in agreement with equation (D5).

Let us finally show that it is possible to find flux
expanding fields which are omnigenous to leading order in
the long-thin expansion. The omnigenuity condition for a
quadrupolar field is, see [1, 2, 22] or equation (20b) in [5]

u u 0.o e e og g +  =

We can make our point by simply considering an odd func-
tion og which results in 0,o og g < whereby the omnigenuity
equation results in an even function ue which increases with
the distance from the mid-plane. One such choice is

,o
z c

z c1 2 2g =
a+

which approaches the SFLM field near the

midplane when α is a positive constant. We then obtain
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g
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This quantity is slowly varying if α is not too large. A WKB
solution to the omnigenuity equation with the Cauchy

Figure D1. Contour of a Yushmanov ion gyro center orbit in the x y0 0

plane, where radial electric fields are neglected. These guiding center
orbits satisfy the equation r I 1 1 cos 2 ,Y0 0

1 2e q= ⋅  - g
-[ ( ) ] /

where IY is constant. The corresponding ion drift occur in a region
bounded by the flux surfaces 2 ,r

I
1 2 1 2

Y

0 e e- g g
- -( ) / / where the

cross sections in the x y0 0 plane of the bounding flux surfaces are the
two circles shown in the figure. The outer flux surface is outside the
plasma confinement region if eg is sufficiently small. With an added
radial electric field of moderate strength, the gyro motion of the
corresponding ions is predicted to be restricted to a motion close to a
single magnetic surface.
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conditions u 0 1e =( ) and u 0 0e¢ =( ) results in
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At the end tank wall, we have u B B 10,e 0 end tank» »
which is satisfied with z c 1.2 ,a»/ / which suggests that
the end tank region could be made short with an appropriate
coil set (the case 1a = gives z c 1.2»/ ). The flux tube cross
sections near the end tank wall is slightly disturbed from
circles, and is in a paraxial approximation of the vaucum field
determined by constant values of

r
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Here, M B B 100 end tank= » stands for the ‘flux tube
magnification’ from the mid plane to the end tank. The mis-
match from perfect circles of the flux tube cross sections at
the end tank can be estimated from this formula. The formula
also describes how flux conservation implies that a mid-plane
plasma radius a 0.4 m= corresponds to an end tank flux tube
radius r Ma 4 m» = when B B 100.0 end tank »

When a flux surface with a constant r ,0 where
r a0 0  for the confinement region, is mapped to the end

tank, the long-thin approximation predicts that the radial
coordinate at the end tank for the mapped flux footprint is
bounded by the annular domain

M r r r M r r,0 0⋅ - D < < ⋅ + D

where r r a.0 0 0g gD » Twice this width, i.e. r2 ,D is a
minimum for each electric insulation width at the end tank if
biased plates with circular boundaries would be used. A
possibility for the possible biased plate arrangement is to use
a set of annular circular plates (the central potential plate
where the magnetic axis intersect could be a circle). Short-
circuiting can be avoided with a sufficiently wide insulation
distance rinsD between adjacent plates (the opposite end tank
wall can be equipped with the same arrangement, but an even
simpler solution may be to use insulation materials through-
out that end tank surface). The formula above predicts that
short-circuiting could be avoided if r a2 ,ins 0 gD where the
lower limit is approached for biased plates with a thin radial
width. If there are N biased end plates, the added insulation
distances must be smaller than the end tank radius Ma, i.e.

N r Ma,ins D

where equality is approached for biased plates with a small
width. This suggests that the maximum number of biased

plates can be estimated by the integer part of

N
M

2
.

0g
»

A shaping of the magnetic field to low values of 0g at the end
tank is essential to admit a large number of biased potentials
and a more detailed control of the radial electric field in the
confinement region. Cases with N>10 (or even substantially
larger) could be envisioned with parameter regimes relevant
for a compact demonstration device. In addition to the radial
resolution, there is also flexibility to vary the potential
strengths during operation, where considerably higher vol-
tages than 1 kV may be an interesting option for the studies.
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